Appendix

Proof of Theorem 1

First, we prove the order of singular values is preserved in a neighborhood of the rank-r matrix M. Using
Weyl’s theorem, we have

loi(M + A) — 0| < || Al g, for 1 <i<n.

< ZiZZitl the following inequality holds

For any ¢ such that o; > o;11: since [|A||z < 5,

£
2

O'Z'+1(M+A) <0i+1+%:dif% <O’1(M+A)

Thus, the order of singular values is preserved. Moreover, since o.(M + A) — o.41(M + A) > 0, the top r
singular value components are unique and consequently P,.(M + A) is unique.

Let M = Y7_, oyu;v] be the rank-r matrix of interest. From matrix perturbation theory [1], we can
describe the decomposition of the perturbed matrix

M+ A= Z(Ui +65) (ug + 0uy) (vs + 0vy) T + Z 8i(ui + 6u;)(v; + dv;) T (1)
=1 i=r+1

where §;, 0u;, and dv; have norms in the order of O(||A||z). Since the top-r singular values of M are
preserved under perturbation, we have P,(M + A) = >°7_ (0; + &) (u; + du;)(v; + dv;)T and (1) can be
reorganized as

Pe(M+A) =M =A= 3" 6(u; +0u;)(vi +0vi)" = A= > widiw] +O(|A]7). (2)
i=r+1 1=r+1
Further, substituting M = Y"7_, o;u;v} into (1) yields

A:

g

(5iuivf+cr,-§uw? JFO'iUi(SUiT) +O(HA||§)
1

Then using the orthogonality of u;,v;, we can obtain
ul Av; = 6; + oy (ul du; + dv;"v;) + O(|Al|3), (3)
uf Av; = O(|| A7), (4)
The second term on the RHS can be computed as follows
_ - T _ T, _ T T 2 Ts, 2
I—Z(ui—i—éui)(ui—l—éui) = 1=uju; =1+u; ou; +du;” u; + O(| Al %) = u; ou; = O(||Al%)
i=1
Similarly, we also have v7dv; = O(||A[|%). Substituting back to (3), we get d; = ul Av; + O(|A[|%). Thus,
(2) can be rewritten as
Pr(M+A) =M =A= " uul Aviv] +O(|A|7) = A — UU7 AVRVS + O(| A7)
i=r+1

where the last equation stems from (4).



Proof of Theorem 3
The error matrix can be represented as follows:
EW =y® A =Py s (X(kr) FB(X® — X(kfn)) M
= [(1+B)(X® = M) = BX 7 — M)]se
= 1+ APV EY) = Mlse = B[P (YED) — Mse.
Using a vertorized version of Theorem 1, we can reformulate the above equation as
e = (14 p)Ia ~ H)e" ™D — (g = H)e" ™ + (1+ B)a(e" ™) — Ba(e™2).

where d = mn — s, e® = S, vec(EW), H = S.(Va @ Us)(Va ®@ Uz)T' ST and q(S. vec(A)) = S.vec(Q(A)).
By stacking e*) and e(*~1) together, the recursion can be rewritten as follows

e®) (1+ B)(Ia = H)  =B(Ia— H)| [e"= D | (1+ B)g(e®V) = Bg(e!=2)

+
ek=1) 1 0 e(k—2) 0

T

Now, using Lemma 10 in [2], we obtain the upper bound

(k)

e(k_l)

w1l e

< (p(T) +o(1))
e(0)
2 2
where p(T) is the spectral radius of T" and is equal to the maximum magnitude of any eigenvalue of T'.
We compute p(T) as follows. Since H is a real symmetric in R%*?, let H = UAUT be the eigenvalue

decomposition of H, where U is a unitary matrix and A is a diagonal matrix whose entries are the eigenvalues
of H:

Define the permutation 7 as

. 25 —1if j<d,
(i) =19, .
27 — 2d otherwise.

Denote the permutation matrix associated with m by P;. Then, T can be shown to be similar to a block
diagonal matrix

1 0 0
T
U 0 1+8)Ia—H) —-pUs—H U 0 0 To, ... O
T~ P (1+8)Ia—H) —p(la—H) P | 2 |
0 U 1 0 0 U
0 O Ty
where each 2 x 2 block T} is of the form
(T+8)A=X) —BA=A))
1 0
for j =1,...,mn. Thus, the eigenvalues of T" are also the eigenvalues of all blocks T};. Finding optimal step

size 3 is equivalent to solving the following problem

mﬁinmax|7°| such that 7% — (1 + 8)(1 — A\j)r + B(1 — X\;) =0, for some j € {1,...,d}.

Since H is a semi-unitary matrix, we have A; <1 for all j. Each quadratic equation has three cases:



3.

CHEA=(1-)) <(1 -1+ B)2 - 46) =0or =0 = 1_\/)\7, then there are two real repeat roots

1+4/7;

<

rjin =12 = /B = A)).

IfA>0o0rfg< 7, then there are two real distinct roots r;1,7;2. The convergence rate depends on
max{|r;ji|,|r;2|}, which is greater than /|3(1 — \;)|.

If A <0or 3> f, then there are two conjugate complex roots satisfying [rja| = [rja| = 1/B(1 — ;).

In any case, we have p(T) = max; |r;| > /|3(1 — Ag)|. The equality holds when setting 5 = 1-v2q

14+vVAg :
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