Appendix

Proof of Theorem 1

First, we prove the order of singular values is preserved in a neighborhood of the rank-r matrix M. Using Weyl's theorem, we have

$$
\left|\sigma_{i}(M+\Delta)-\sigma_{i}\right| \leq\|\Delta\|_{F}, \quad \text { for } 1 \leq i \leq n
$$

For any i such that $\sigma_{i}>\sigma_{i+1}$: since $\|\Delta\|_{F}<\frac{\epsilon}{2} \leq \frac{\sigma_{i}-\sigma_{i+1}}{2}$, the following inequality holds

$$
\sigma_{i+1}(M+\Delta)<\sigma_{i+1}+\frac{\sigma_{i}-\sigma_{i+1}}{2}=\sigma_{i}-\frac{\sigma_{i}-\sigma_{i+1}}{2}<\sigma_{i}(M+\Delta)
$$

Thus, the order of singular values is preserved. Moreover, since $\sigma_{r}(M+\Delta)-\sigma_{r+1}(M+\Delta)>0$, the top r singular value components are unique and consequently $\mathcal{P}_{r}(M+\Delta)$ is unique.

Let $M=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{T}$ be the rank- r matrix of interest. From matrix perturbation theory [1], we can describe the decomposition of the perturbed matrix

$$
\begin{equation*}
M+\Delta=\sum_{i=1}^{r}\left(\sigma_{i}+\delta_{i}\right)\left(u_{i}+\delta u_{i}\right)\left(v_{i}+\delta v_{i}\right)^{T}+\sum_{i=r+1}^{n} \delta_{i}\left(u_{i}+\delta u_{i}\right)\left(v_{i}+\delta v_{i}\right)^{T} \tag{1}
\end{equation*}
$$

where $\delta_{i}, \delta u_{i}$, and δv_{i} have norms in the order of $O\left(\|\Delta\|_{F}\right)$. Since the top- r singular values of M are preserved under perturbation, we have $\mathcal{P}_{r}(M+\Delta)=\sum_{i=1}^{r}\left(\sigma_{i}+\delta_{i}\right)\left(u_{i}+\delta u_{i}\right)\left(v_{i}+\delta v_{i}\right)^{T}$ and (1) can be reorganized as

$$
\begin{equation*}
\mathcal{P}_{r}(M+\Delta)-M=\Delta-\sum_{i=r+1}^{n} \delta_{i}\left(u_{i}+\delta u_{i}\right)\left(v_{i}+\delta v_{i}\right)^{T}=\Delta-\sum_{i=r+1}^{n} u_{i} \delta_{i} v_{i}^{T}+O\left(\|\Delta\|_{F}^{2}\right) . \tag{2}
\end{equation*}
$$

Further, substituting $M=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{T}$ into (1) yields

$$
\Delta=\sum_{i=1}^{n}\left(\delta_{i} u_{i} v_{i}^{T}+\sigma_{i} \delta u_{i} v_{i}^{T}+\sigma_{i} u_{i} \delta v_{i}^{T}\right)+O\left(\|\Delta\|_{F}^{2}\right)
$$

Then using the orthogonality of u_{i}, v_{i}, we can obtain

$$
\begin{align*}
u_{i}^{T} \Delta v_{i} & =\delta_{i}+\sigma_{i}\left(u_{i}^{T} \delta u_{i}+\delta v_{i}^{T} v_{i}\right)+O\left(\|\Delta\|_{F}^{2}\right) \tag{3}\\
u_{i}^{T} \Delta v_{j} & =O\left(\|\Delta\|_{F}^{2}\right) \tag{4}
\end{align*}
$$

The second term on the RHS can be computed as follows

$$
I=\sum_{i=1}^{n}\left(u_{i}+\delta u_{i}\right)\left(u_{i}+\delta u_{i}\right)^{T} \quad \Rightarrow 1=u_{i}^{T} u_{i}=1+u_{i}^{T} \delta u_{i}+\delta u_{i}^{T} u_{i}+O\left(\|\Delta\|_{F}^{2}\right) \quad \Rightarrow u_{i}^{T} \delta u_{i}=O\left(\|\Delta\|_{F}^{2}\right)
$$

Similarly, we also have $v_{i}^{T} \delta v_{i}=O\left(\|\Delta\|_{F}^{2}\right)$. Substituting back to (3), we get $\delta_{i}=u_{i}^{T} \Delta v_{i}+O\left(\|\Delta\|_{F}^{2}\right)$. Thus, (2) can be rewritten as

$$
\mathcal{P}_{r}(M+\Delta)-M=\Delta-\sum_{i=r+1}^{n} u_{i} u_{i}^{T} \Delta v_{i} v_{i}^{T}+O\left(\|\Delta\|_{F}^{2}\right)=\Delta-U_{2} U_{2}^{T} \Delta V_{2} V_{2}^{T}+O\left(\|\Delta\|_{F}^{2}\right)
$$

where the last equation stems from (4).

Proof of Theorem 3

The error matrix can be represented as follows:

$$
\begin{aligned}
E^{(k)}=Y^{(k)}-M & =\mathcal{P}_{M, \mathcal{S}}\left(X^{(k)}+\beta\left(X^{(k)}-X^{(k-1)}\right)\right)-M \\
& =\left[(1+\beta)\left(X^{(k)}-M\right)-\beta\left(X^{(k-1)}-M\right)\right]_{\mathcal{S}^{c}} \\
& =(1+\beta)\left[\mathcal{P}_{r}\left(Y^{(k-1)}\right)-M\right]_{\mathcal{S}^{c}}-\beta\left[\mathcal{P}_{r}\left(Y^{(k-2)}\right)-M\right]_{\mathcal{S}^{c}} .
\end{aligned}
$$

Using a vertorized version of Theorem 1, we can reformulate the above equation as

$$
e^{(k)}=(1+\beta)\left(I_{d}-H\right) e^{(k-1)}-\beta\left(I_{d}-H\right) e^{(k-2)}+(1+\beta) q\left(e^{(k-1)}\right)-\beta q\left(e^{(k-2)}\right) .
$$

where $d=m n-s, e^{(k)}=S_{c} \operatorname{vec}\left(E^{(k)}\right), H=S_{c}\left(V_{2} \otimes U_{2}\right)\left(V_{2} \otimes U_{2}\right)^{T} S_{c}^{T}$ and $q\left(S_{c} \operatorname{vec}(\Delta)\right)=S_{c} \operatorname{vec}(Q(\Delta))$. By stacking $e^{(k)}$ and $e^{(k-1)}$ together, the recursion can be rewritten as follows

$$
\left[\begin{array}{c}
e^{(k)} \\
e^{(k-1)}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
(1+\beta)\left(I_{d}-H\right) & -\beta\left(I_{d}-H\right) \\
I_{d} & \mathbf{0}
\end{array}\right]}_{T}\left[\begin{array}{l}
e^{(k-1)} \\
e^{(k-2)}
\end{array}\right]+\left[\begin{array}{c}
(1+\beta) q\left(e^{(k-1)}\right)-\beta q\left(e^{(k-2)}\right) \\
0
\end{array}\right] .
$$

Now, using Lemma 10 in [2], we obtain the upper bound

$$
\left\|\left[\begin{array}{c}
e^{(k)} \\
e^{(k-1)}
\end{array}\right]\right\|_{2} \leq(\rho(T)+o(1))^{k-1}\left\|\left[\begin{array}{c}
e^{(1)} \\
e^{(0)}
\end{array}\right]\right\|_{2}
$$

where $\rho(T)$ is the spectral radius of T and is equal to the maximum magnitude of any eigenvalue of T.
We compute $\rho(T)$ as follows. Since H is a real symmetric in $\mathbb{R}^{d \times d}$, let $H=U \Lambda U^{T}$ be the eigenvalue decomposition of H, where U is a unitary matrix and Λ is a diagonal matrix whose entries are the eigenvalues of H :

$$
\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{d}=\sigma^{2} .
$$

Define the permutation π as

$$
\pi(j)=\left\{\begin{array}{l}
2 j-1 \text { if } j \leq d, \\
2 j-2 d \text { otherwise }
\end{array}\right.
$$

Denote the permutation matrix associated with π by P_{π}. Then, T can be shown to be similar to a block diagonal matrix

$$
T \sim P_{\pi}\left[\begin{array}{cc}
U & 0 \\
0 & U
\end{array}\right]^{T}\left[\begin{array}{cc}
(1+\beta)\left(I_{d}-H\right) & -\beta\left(I_{d}-H\right) \\
I_{d} & \mathbf{0}
\end{array}\right]\left[\begin{array}{cc}
U & 0 \\
0 & U
\end{array}\right] P_{\pi}^{T}=\left[\begin{array}{cccc}
T_{1} & 0 & \ldots & 0 \\
0 & T_{2} & \ldots & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \ldots & T_{d}
\end{array}\right]
$$

where each 2×2 block T_{j} is of the form

$$
\left[\begin{array}{cc}
(1+\beta)\left(1-\lambda_{j}\right) & -\beta\left(1-\lambda_{j}\right) \\
1 & 0
\end{array}\right]
$$

for $j=1, \ldots, m n$. Thus, the eigenvalues of T are also the eigenvalues of all blocks T_{j}. Finding optimal step size β is equivalent to solving the following problem

$$
\min _{\beta} \max _{r}|r| \quad \text { such that } r^{2}-(1+\beta)\left(1-\lambda_{j}\right) r+\beta\left(1-\lambda_{j}\right)=0, \quad \text { for some } j \in\{1, \ldots, d\} .
$$

Since H is a semi-unitary matrix, we have $\lambda_{j} \leq 1$ for all j. Each quadratic equation has three cases:

1. If $\Delta=\left(1-\lambda_{j}\right)\left(\left(1-\lambda_{j}\right)(1+\beta)^{2}-4 \beta\right)=0$ or $\beta=\beta_{j}^{*}=\frac{1-\sqrt{\lambda_{j}}}{1+\sqrt{\lambda_{j}}}$, then there are two real repeat roots $r_{j 1}=r_{j 2}=\sqrt{\beta\left(1-\lambda_{j}\right)}$.
2. If $\Delta>0$ or $\beta<\beta_{j}^{*}$, then there are two real distinct roots $r_{j 1}, r_{j 2}$. The convergence rate depends on $\max \left\{\left|r_{j 1}\right|,\left|r_{j 2}\right|\right\}$, which is greater than $\sqrt{\left|\beta\left(1-\lambda_{j}\right)\right|}$.
3. If $\Delta<0$ or $\beta>\beta_{j}^{*}$, then there are two conjugate complex roots satisfying $\left|r_{j 2}\right|=\left|r_{j 2}\right|=\sqrt{\beta\left(1-\lambda_{j}\right)}$.

In any case, we have $\rho(T)=\max _{j}\left|r_{j}\right| \geq \sqrt{\left|\beta\left(1-\lambda_{d}\right)\right|}$. The equality holds when setting $\beta=\frac{1-\sqrt{\lambda_{d}}}{1+\sqrt{\lambda_{d}}}$.

References

[1] F. Li and R.-J. Vaccaro, "Unified analysis for DOA estimation algorithms in array signal processing," Signal Processing, vol. 22, pp. 147-169, 1991.
[2] B. Polyak, "Some methods of speeding up the convergence of iteration methods," in Ussr Computational Mathematics and Mathematical Physics, 1964, vol. 4, pp. 1-17.

