Appendix

Proof of Theorem 1

First, we prove the order of singular values is preserved in a neighborhood of the rank-r matrix M. Using Weyl's theorem, we have

$$|\sigma_i(M + \Delta) - \sigma_i| \le ||\Delta||_F$$
, for $1 \le i \le n$.

For any *i* such that $\sigma_i > \sigma_{i+1}$: since $\|\Delta\|_F < \frac{\epsilon}{2} \le \frac{\sigma_i - \sigma_{i+1}}{2}$, the following inequality holds

$$\sigma_{i+1}(M+\Delta) < \sigma_{i+1} + \frac{\sigma_i - \sigma_{i+1}}{2} = \sigma_i - \frac{\sigma_i - \sigma_{i+1}}{2} < \sigma_i(M+\Delta).$$

Thus, the order of singular values is preserved. Moreover, since $\sigma_r(M + \Delta) - \sigma_{r+1}(M + \Delta) > 0$, the top r

singular value components are unique and consequently $\mathcal{P}_r(M + \Delta)$ is unique. Let $M = \sum_{i=1}^r \sigma_i u_i v_i^T$ be the rank-*r* matrix of interest. From matrix perturbation theory [1], we can describe the decomposition of the perturbed matrix

$$M + \Delta = \sum_{i=1}^{r} (\sigma_i + \delta_i)(u_i + \delta u_i)(v_i + \delta v_i)^T + \sum_{i=r+1}^{n} \delta_i(u_i + \delta u_i)(v_i + \delta v_i)^T$$
(1)

where $\delta_i, \delta u_i$, and δv_i have norms in the order of $O(\|\Delta\|_F)$. Since the top-*r* singular values of *M* are preserved under perturbation, we have $\mathcal{P}_r(M + \Delta) = \sum_{i=1}^r (\sigma_i + \delta_i)(u_i + \delta u_i)(v_i + \delta v_i)^T$ and (1) can be reorganized as

$$\mathcal{P}_{r}(M+\Delta) - M = \Delta - \sum_{i=r+1}^{n} \delta_{i}(u_{i} + \delta u_{i})(v_{i} + \delta v_{i})^{T} = \Delta - \sum_{i=r+1}^{n} u_{i}\delta_{i}v_{i}^{T} + O(\|\Delta\|_{F}^{2}).$$
(2)

Further, substituting $M = \sum_{i=1}^{r} \sigma_i u_i v_i^T$ into (1) yields

$$\Delta = \sum_{i=1}^{n} \left(\delta_i u_i v_i^T + \sigma_i \delta u_i v_i^T + \sigma_i u_i \delta v_i^T \right) + O(\|\Delta\|_F^2).$$

Then using the orthogonality of u_i, v_i , we can obtain

$$u_i^T \Delta v_i = \delta_i + \sigma_i (u_i^T \delta u_i + \delta v_i^T v_i) + O(\|\Delta\|_F^2),$$
(3)

$$u_i^T \Delta v_j = O(\|\Delta\|_F^2),\tag{4}$$

The second term on the RHS can be computed as follows

$$I = \sum_{i=1}^{n} (u_i + \delta u_i)(u_i + \delta u_i)^T \qquad \Rightarrow 1 = u_i^T u_i = 1 + u_i^T \delta u_i + \delta u_i^T u_i + O(\|\Delta\|_F^2) \qquad \Rightarrow u_i^T \delta u_i = O(\|\Delta\|_F^2)$$

Similarly, we also have $v_i^T \delta v_i = O(\|\Delta\|_F^2)$. Substituting back to (3), we get $\delta_i = u_i^T \Delta v_i + O(\|\Delta\|_F^2)$. Thus, (2) can be rewritten as

$$\mathcal{P}_{r}(M+\Delta) - M = \Delta - \sum_{i=r+1}^{n} u_{i} u_{i}^{T} \Delta v_{i} v_{i}^{T} + O(\|\Delta\|_{F}^{2}) = \Delta - U_{2} U_{2}^{T} \Delta V_{2} V_{2}^{T} + O(\|\Delta\|_{F}^{2})$$

where the last equation stems from (4).

Proof of Theorem 3

The error matrix can be represented as follows:

$$E^{(k)} = Y^{(k)} - M = \mathcal{P}_{M,\mathcal{S}} \left(X^{(k)} + \beta (X^{(k)} - X^{(k-1)}) \right) - M$$

= $[(1 + \beta)(X^{(k)} - M) - \beta (X^{(k-1)} - M)]_{\mathcal{S}^c}$
= $(1 + \beta)[\mathcal{P}_r(Y^{(k-1)}) - M]_{\mathcal{S}^c} - \beta [\mathcal{P}_r(Y^{(k-2)}) - M]_{\mathcal{S}^c}$

Using a vertorized version of Theorem 1, we can reformulate the above equation as

$$e^{(k)} = (1+\beta)(I_d - H)e^{(k-1)} - \beta(I_d - H)e^{(k-2)} + (1+\beta)q(e^{(k-1)}) - \beta q(e^{(k-2)}).$$

where d = mn - s, $e^{(k)} = S_c \operatorname{vec}(E^{(k)})$, $H = S_c(V_2 \otimes U_2)(V_2 \otimes U_2)^T S_c^T$ and $q(S_c \operatorname{vec}(\Delta)) = S_c \operatorname{vec}(Q(\Delta))$. By stacking $e^{(k)}$ and $e^{(k-1)}$ together, the recursion can be rewritten as follows

$$\begin{bmatrix} e^{(k)} \\ e^{(k-1)} \end{bmatrix} = \underbrace{\begin{bmatrix} (1+\beta)(I_d - H) & -\beta(I_d - H) \\ I_d & \mathbf{0} \end{bmatrix}}_{T} \begin{bmatrix} e^{(k-1)} \\ e^{(k-2)} \end{bmatrix} + \begin{bmatrix} (1+\beta)q(e^{(k-1)}) - \beta q(e^{(k-2)}) \\ 0 \end{bmatrix}.$$

Now, using Lemma 10 in [2], we obtain the upper bound

$$\left\| \begin{bmatrix} e^{(k)} \\ e^{(k-1)} \end{bmatrix} \right\|_2 \le \left(\rho(T) + o(1) \right)^{k-1} \left\| \begin{bmatrix} e^{(1)} \\ e^{(0)} \end{bmatrix} \right\|_2$$

where $\rho(T)$ is the spectral radius of T and is equal to the maximum magnitude of any eigenvalue of T.

We compute $\rho(T)$ as follows. Since H is a real symmetric in $\mathbb{R}^{d \times d}$, let $H = U\Lambda U^T$ be the eigenvalue decomposition of H, where U is a unitary matrix and Λ is a diagonal matrix whose entries are the eigenvalues of H:

$$\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_d = \sigma^2.$$

Define the permutation π as

$$\pi(j) = \begin{cases} 2j - 1 \text{ if } j \le d, \\ 2j - 2d \text{ otherwise.} \end{cases}$$

Denote the permutation matrix associated with π by P_{π} . Then, T can be shown to be similar to a block diagonal matrix

$$T \sim P_{\pi} \begin{bmatrix} U & 0 \\ 0 & U \end{bmatrix}^{T} \begin{bmatrix} (1+\beta)(I_{d}-H) & -\beta(I_{d}-H) \\ I_{d} & \mathbf{0} \end{bmatrix} \begin{bmatrix} U & 0 \\ 0 & U \end{bmatrix} P_{\pi}^{T} = \begin{bmatrix} T_{1} & 0 & \dots & 0 \\ 0 & T_{2} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \dots & T_{d} \end{bmatrix}$$

where each 2×2 block T_j is of the form

$$\begin{bmatrix} (1+\beta)(1-\lambda_j) & -\beta(1-\lambda_j) \\ 1 & 0 \end{bmatrix}$$

for j = 1, ..., mn. Thus, the eigenvalues of T are also the eigenvalues of all blocks T_j . Finding optimal step size β is equivalent to solving the following problem

$$\min_{\beta} \max_{r} |r| \quad \text{such that } r^2 - (1+\beta)(1-\lambda_j)r + \beta(1-\lambda_j) = 0, \quad \text{for some } j \in \{1, \dots, d\}.$$

Since H is a semi-unitary matrix, we have $\lambda_j \leq 1$ for all j. Each quadratic equation has three cases:

- 1. If $\Delta = (1 \lambda_j) \left((1 \lambda_j)(1 + \beta)^2 4\beta \right) = 0$ or $\beta = \beta_j^* = \frac{1 \sqrt{\lambda_j}}{1 + \sqrt{\lambda_j}}$, then there are two real repeat roots $r_{j1} = r_{j2} = \sqrt{\beta(1 \lambda_j)}$.
- 2. If $\Delta > 0$ or $\beta < \beta_j^*$, then there are two real distinct roots r_{j1}, r_{j2} . The convergence rate depends on $\max\{|r_{j1}|, |r_{j2}|\}$, which is greater than $\sqrt{|\beta(1-\lambda_j)|}$.
- 3. If $\Delta < 0$ or $\beta > \beta_j^*$, then there are two conjugate complex roots satisfying $|r_{j2}| = |r_{j2}| = \sqrt{\beta(1-\lambda_j)}$.

In any case, we have $\rho(T) = \max_j |r_j| \ge \sqrt{|\beta(1-\lambda_d)|}$. The equality holds when setting $\beta = \frac{1-\sqrt{\lambda_d}}{1+\sqrt{\lambda_d}}$.

References

- F. Li and R.-J. Vaccaro, "Unified analysis for DOA estimation algorithms in array signal processing," Signal Processing, vol. 22, pp. 147–169, 1991.
- [2] B. Polyak, "Some methods of speeding up the convergence of iteration methods," in Ussr Computational Mathematics and Mathematical Physics, 1964, vol. 4, pp. 1–17.